Thanks Karmic, ive implemented those steps and i think that that was part of the reason why it wasnt working as i was using action instead of score. but it still does stop once at the router step after the json. take a look at the outputs of this run:
OpenAI output:
“result”: {
“score”: 75,
“action”: “BookCall”,
“reason”: “Good ICP fit, budget available, decision authority confirmed, clear need, timeline within 3 months”
},
“conversationId”: “conv_693a32298544819094379ba254b1267e002e2004a84f6165”,
“raw_result”: “{\“score\”: 75, \“action\”: \“BookCall\”, \“reason\”: \“Good ICP fit, budget available, decision authority confirmed, clear need, timeline within 3 months\”}”,
“id”: “resp_002e2004a84f616500693a322a35b8819099e9cc3edd85472e”,
“object”: “response”,
“created_at”: “2025-12-11T02:53:30.000Z”,
“status”: “completed”,
“background”: false,
“billing”: {
“payer”: “developer”
},
“error”: null,
“incomplete_details”: null,
“instructions”: null,
“max_output_tokens”: 100,
“max_tool_calls”: null,
“model”: “gpt-4.1-mini-2025-04-14”,
“output”: [
{
“id”: “msg_002e2004a84f616500693a322b7b508190862f105f8aa2da4d”,
“type”: “message”,
“status”: “completed”,
“content”: [
{
“type”: “output_text”,
“annotations”: ,
“logprobs”: ,
“text”: “{\“score\”: 75, \“action\”: \“BookCall\”, \“reason\”: \“Good ICP fit, budget available, decision authority confirmed, clear need, timeline within 3 months\”}”
}
],
“role”: “assistant”
}
],
“parallel_tool_calls”: true,
“previous_response_id”: null,
“prompt_cache_key”: null,
“prompt_cache_retention”: null,
“reasoning”: {
“effort”: null,
“summary”: null
},
“safety_identifier”: null,
“service_tier”: “default”,
“store”: true,
“temperature”: 1,
“text”: {
“format”: {
“type”: “json_object”
},
“verbosity”: “medium”
},
“tool_choice”: “auto”,
“tools”: ,
“top_logprobs”: 0,
“top_p”: 1,
“truncation”: “auto”,
“usage”: {
“input_tokens”: 145,
“input_tokens_details”: {
“cached_tokens”: 0
},
“output_tokens”: 38,
“output_tokens_details”: {
“reasoning_tokens”: 0
},
“total_tokens”: 183
},
“user”: null,
“metadata”: {}
}
]
Parse JSON output:
[
{
“result”: {
“score”: 75,
“action”: “BookCall”,
“reason”: “Good ICP fit, budget available, decision authority confirmed, clear need, timeline within 3 months”
},
“conversationId”: “conv_693a32298544819094379ba254b1267e002e2004a84f6165”,
“raw_result”: “{\“score\”: 75, \“action\”: \“BookCall\”, \“reason\”: \“Good ICP fit, budget available, decision authority confirmed, clear need, timeline within 3 months\”}”,
“id”: “resp_002e2004a84f616500693a322a35b8819099e9cc3edd85472e”,
“object”: “response”,
“created_at”: “2025-12-11T02:53:30.000Z”,
“status”: “completed”,
“background”: false,
“billing”: {
“payer”: “developer”
},
“error”: null,
“incomplete_details”: null,
“instructions”: null,
“max_output_tokens”: 100,
“max_tool_calls”: null,
“model”: “gpt-4.1-mini-2025-04-14”,
“output”: [
{
“id”: “msg_002e2004a84f616500693a322b7b508190862f105f8aa2da4d”,
“type”: “message”,
“status”: “completed”,
“content”: [
{
“type”: “output_text”,
“annotations”: ,
“logprobs”: ,
“text”: “{\“score\”: 75, \“action\”: \“BookCall\”, \“reason\”: \“Good ICP fit, budget available, decision authority confirmed, clear need, timeline within 3 months\”}”
}
],
“role”: “assistant”
}
],
“parallel_tool_calls”: true,
“previous_response_id”: null,
“prompt_cache_key”: null,
“prompt_cache_retention”: null,
“reasoning”: {
“effort”: null,
“summary”: null
},
“safety_identifier”: null,
“service_tier”: “default”,
“store”: true,
“temperature”: 1,
“text”: {
“format”: {
“type”: “json_object”
},
“verbosity”: “medium”
},
“tool_choice”: “auto”,
“tools”: ,
“top_logprobs”: 0,
“top_p”: 1,
“truncation”: “auto”,
“usage”: {
“input_tokens”: 145,
“input_tokens_details”: {
“cached_tokens”: 0
},
“output_tokens”: 38,
“output_tokens_details”: {
“reasoning_tokens”: 0
},
“total_tokens”: 183
},
“user”: null,
“metadata”: {}
}
]
and here are the photos of what the filter blocked